Effects of Elevated Atmospheric Co2 on Soil Co2 Efflux in Conventional and Conservation Cropping Systems

نویسندگان

  • G. B. Runion
  • S. A. Prior
  • H. H. Rogers
  • H. A. Torbert
چکیده

Elevated atmospheric carbon dioxide (CO2) can affect both the quantity and quality of plant tissues produced, which will impact the cycling and storage of carbon (C) within plant/soil systems and thus the rate of CO2 release back to the atmosphere. Research is needed to more accurately quantify the effects of elevated CO2 and associated feedbacks on soil CO2 efflux in order to predict the potential of terrestrial ecosystems to sequester C. Effects of elevated atmospheric CO2 on soil CO2 efflux were examined in a long-term study comparing row crops managed as either a conventional or a conservation tillage system. In the conventional system, grain sorghum and soybean were rotated each year using conventional tillage practices and winter fallow. The conservation system also uses a grain sorghum­ soybean rotation, with three winter cover crops: wheat, crimson clover, and sunn hemp which were also rotated. All crops in the conservation system were grown using "no-till" practices. Plants were exposed to either 365 ppm (ambient) or 725 ppm (elevated) levels of atmospheric CO2 using open top field chambers. Soil CO2 efflux, over a full two-year cropping cycle, was increased by both elevated atmospheric CO2 and by conservation management; these increases were due, primarily, to increased biomass inputs from these treatments. Implications of these data on soil carbon storage in these systems will be discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elevated atmospheric CO2 effects on biomass production and soil carbon in conventional and conservation cropping systems

Increasing atmospheric CO2 concentration has led to concerns about potential effects on production agriculture as well as agriculture’s role in sequestering C. In the fall of 1997, a study was initiated to compare the response of two crop management systems (conventional and conservation) to elevated CO2. The study used a split-plot design replicated three times with two management systems as m...

متن کامل

Effects of Atmospheric CO2 Enrichment on Soil CO2 Efflux in a Young Longleaf Pine System

The southeastern landscape is composed of agricultural and forest systems that can store carbon (C) in standing biomass and soil. Research is needed to quantify the effects of elevated atmospheric carbon dioxide (CO2) on terrestrial C dynamics including CO2 release back to the atmosphere and soil sequestration. Longleaf pine savannahs are an ecologically and economically important, yet understu...

متن کامل

Carbon dioxide efflux from soil with poultry litter applications in conventional and conservation tillage systems in northern Alabama.

Increased CO2 release from soils resulting from agricultural practices such as tillage has generated concerns about contributions to global warming. Maintaining current levels of soil C and/or sequestering additional C in soils are important mechanisms to reduce CO2 in the atmosphere through production agriculture. We conducted a study in northern Alabama from 2003 to 2006 to measure CO2 efflux...

متن کامل

Effects of elevated atmospheric CO2 on root dynamics and productivity of sorghum grown under conventional and conservation agricultural management practices

Although it is widely acknowledged that rising atmospheric CO2 concentrations will increase crop root growth, no study has considered how this response could be influenced by agricultural management practices. Therefore, we examined the influence of elevated atmospheric CO2 (ambient + 360 mmol mol ) on root dynamics of sorghum (Sorghum bicolor) produced under conventional (tillage following win...

متن کامل

Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007